

Second Stakeholder Meeting for Residential Water Heating Compact Hot Water Distribution Design

March 23, 2017

Marc Hoeschele

mhoeschele@davisenergy.com

Peter Grant

pgrant@davisenergy.com

1. Background

What's the Problem?

- Issues impacting distribution system performance
 - Typical architectural design
 - Non-existent plumbing design
 - PEX can lead to sprawling layouts
 - Wait times impacted by:
 - Low(er) flow rate devices
 - Pipe sizing conservativism
- Recirculation is a solution for water waste, but not energy

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss \rightarrow Reduced

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss \rightarrow Reduced
 - Wasted water

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss \rightarrow Reduced
 - Wasted water \rightarrow Reduced

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss \rightarrow Reduced
 - Wasted water \rightarrow Reduced
 - Wait time \rightarrow Reduced, but shower singing increased

Typical Distribution System Layout

More Compact Distribution Layout

Measure Goal

- Encourage builders to bring the water heater in closer proximity to all use points
 - Focus on Master Bath and Kitchen as primary sources of hot water draw events and hot water load

Relevant Code History

- Compact design is an existing 2016 compliance option
 - HERS-Verified compact hot water design credit
 - Uptake close to zero (CalCerts registry data)
- Other Relevant Requirements/Specifications
 - EPA WaterSense®
 - 0.5 gallon between hot water source and any hot water fixture
 - 2016 CalGreen
 - Voluntary measures Appendix A4 (demand recirculation)
 - 2015 IAPMO Green Plumbing Supplement
 - Maximum volume between source of hot water and use point
 - IECC 2018: NRDC proposal for compact (wasn't accepted)
 - Maximum length (prescriptive), with performance credit for > compactness

2. Proposed Code Changes

Proposed Code Change

- Revision to existing compliance option
- Single family residential new construction only
- Two tiered credit strategy
 - Basic: no HERS verification required
 - Expanded: greater credit, with limited HERS verification

Why Are We Proposing This Code Change

- Help support ZNE goals
- Achieve energy (and water) savings
- Provide builders with flexible means of compliance
- Promote improved plumbing practices
 - Homeowners benefit (wait time, less waste)
 - Builders benefit (homeowner satisfaction)

Basics of Proposed Compact Design Measure

- Two versions: Basic Credit, Expanded Credit
 - Both are based on plan view calculation

- Comparison between two calculated values
 - Weighted Distance (WD)
 - Qualification Distance (QD)

Basics of Measure

- WD & QD equations vary with:
 - Non-recirculation or recirculation (both WD, QD)
 - Number of stories (QD)
 - Conditioned floor area (QD)
- Adds Compactness Factor (CF) to distribution loss equations in the ACM
 - CF = 1.0 for non-compact system (default)
 - CF = 0.7 for Basic Credit
 - CF < 0.7 for Expanded Credit

$DLM_k = 1 + (SDLM_k - 1) * DSM_k * CF$

Equation 5

Weighted Distance (WD) Calculation

- WD = x * d_MasterBath + y * d_Kitchen + z * d_FurthestFixture
 - d_MasterBath=Distance from water heater to furthest master bathroom fixture
 - d_Kitchen = Distance from water heater to furthest fixture in kitchen
 - d_FurthestFixture = Distance from water heater to furthest fixture in house
 - Not in the master bathroom or kitchen

Distribution System	X	У	Z
Non-Recirculating	0.4	0.4	0.2
Recirculating	0	0	1

Qualification Distance Criteria Development – 1 story, Non-Recirculating

Basic Credit

• Qualification:

– Weighted Distance < Qualification Distance

• Reward

 $- \, \text{CF} = 0.7$

Expanded Credit

- Qualification:
 - 1. Weighted Distance < Qualification Distance
 - 2. HERS verification steps:
 - Less than 8' of 1" diameter pipe (and no larger piping)
 - No hot water piping allowed in attic in two and three story homes unless water heater is located in the attic
 - Eligible recirculating systems must be HERS-Verified Demand Recirculation: Manual Control conforming to RA4.4.17.
- If meeting 1 & 2, the Expanded Credit criteria is satisfied

- And, CF = 0.3 + 0.4 * WD/QD

Base Case Example: 1814 ft² two-story, Qualification Distance = 23.2 Fails Basic Credit

Weighted Distance = 0.4 * 28.9 ft + 0.4 * 31.1 ft + 0.2 * 34.3 ft = 30.9 ft

Compact Example: 1814 ft² two-story, Qualification Distance = 23.2 ft Meets Basic Credit

Weighted Distance = 0.4 * 12.9 ft + 0.4 * 11.8 ft + 0.2 * 16.1 ft = 13.1 ft

What do you think?

What do you think about the proposed code change?

3. Technical and Market Barriers

Technical and Market Barriers

- Centrally locating water heater is a challenge
 - Increased venting distance/costs
 - Impacts garage space
- Possible solutions:
 - Condensing water heater (cheaper plastic vent pipe)
 - External wall (non-garage) mounting close to key use points
 - Attic

Expensive vent kits for non-condensing

Cheaper plastic for condensing

Technical and Market Barriers

- Title 24 Consultant 💭 Builder 💭 Plumber communication
 - The consultant specs Expanded Credit, but plumber does not know
 - Plumber installs non-compliant system & fails HERS verification
- Solution \rightarrow Clear direction to plumber
 - Eligibility criteria on plans
 - Plumber training

Technical and Market Barriers

- Piping required between floors for Expanded Credit
 - Open web floor trusses not standard
 - Added labor when dealing with I-joists
 - Is this a significant problem?
- Solution \rightarrow Builder can default to Basic Credit

4. Compliance and Enforcement

Design Phase

- What happens during design phase
 - Water heater in more central location and/or architectural design reflects compact design approach
 - Provide Weighted Distance vectors on floor plan for easier plan review
 - For Expanded Credit, clearly specify eligibility criteria on plumbing plans

- What happens in permit application phase?
 - Prepare documentation
 - Complete Title 24, Part 6 calculations indicating Basic or Expanded Credit
 - Expanded Credit would trigger installation and HERS verification reports (CF2R and CF3R)
 - Plan reviewer verifies Weighted Distance qualification is met

- What happens in construction phase?
 - Basic Credit: No impact
 - Expanded Credit: Plumber follows compact design eligibility requirements

- What happens in inspection phase?
 - For Basic Credit, nothing
 - For Expanded Credit, simple HERS visual inspections:
 - a. Less than 8' of 1" diameter pipe (and no larger piping)
 - b. No hot water piping in attic in two and three story homes unless water heater is located in the attic
 - c. Recirculating systems must be HERS-Verified Demand Recirculation: Manual Control conforming to RA4.4.17.

Compliance and Enforcement Barriers

- Issue: Developing clear communication for Expanded Credit between Title 24 consultant and plumber
 - Plumber installs non-compliant system, fails HERS inspection
- Solution \rightarrow Plumber education on eligibility criteria critical
- Solution \rightarrow Documentation on credit provided to plumber

Compliance and Enforcement Barriers

- Issue: Added plan checker verification requirement
 - Plan check process needs to verify WD calculation
- Solution \rightarrow Brief training for plan reviewers

What do you think?

What do you think about the compliance and enforcement barriers?

5. Cost-Effectiveness and Energy and Water Impacts

Definition of Baseline and Proposed Conditions

Baseline Conditions

- Minimally compliant with 2016 Standards
- List key assumptions
 - Develop standard water heating budget for house sizes ranging from 1,200 to 4,000 ft², assuming <u>all hot water pipes insulated using</u> CBECC-Res
 - CBECC water heating model assumes hot water loads vary with number of bedrooms

Proposed Conditions

 Simulate compact hot water distribution Basic Credit (CF = 0.7)

Projected Savings as a Function of House Size

Estimated Water Savings Impact

- Water-use impacts are highly dependent upon behavior and occupancy
- Can only assess with detailed, short time step simulation models
- Building America report looked at performance in six U.S. climates
- Based on findings, estimating typical water savings of 962 gallons/year for ~2,000 ft² home

What do you think?

- Do the projected energy savings seem reasonable?
- Are the estimated water savings appropriate?

Estimated Water Savings

• 962 gallons/year

For typical 2,000 ft² home

(Based on findings from *Building America* report)

Projected Energy Savings

- 1,200 ft² CFA 2.8 therms/yr
- 2,500 ft² CFA 5.2 therms/yr
- 4,000 ft² CFA 6.0 therms/yr

6. Next Steps

Next Steps

- Please send any additional feedback to:
 - CASE authors:
 - Info@title24stakeholders.com
- Keep an eye on <u>Title24Stakeholders.com</u> for:
 - Presentations from today's meeting
 - Draft Code Change Language
 - Notes from today's meeting
 - Draft CASE Report (will be posted in April)

Let's move on to... Drain Water Heat Recovery (DWHR)

References

- <u>Title24Stakeholders.com</u>
- EnergyCodeAce.com
 - See <u>Reference Ace</u> for 2016 Standards, Appendices, and Compliance Manuals
- <u>California Energy Commission 2019 Standards Webpage</u>

