

2019 Title 24 Codes & Standards Enhancement (CASE) Proposal Cooling Tower Minimum Efficiency

September 26, 2016

Stefan Gracik Integral Group sgracik@integralgroup.com

Proposed Code Change Overview

- Impacts all new construction projects with cooling towers
 - All chillers >300 tons are required to have water-cooling
 - Directly impacts projects these projects if undergoing prescriptive compliance
 - Indirectly impacts projects undergoing performance compliance
- Description of proposed changes:
 - Proposed Revisions to Prescriptive Requirements :
 - Increase ALL cooling tower efficiencies (42.1 GPM/HP to 80 GPM/HP) (beyond 90.1)
 - Proposed Revisions to ACM:
 - Increase baseline cooling tower efficiency from 42.1 GPM/HP to 80 GPM/HP

Proposed Code Change History

- Why are we proposing this measure?
 - Significant energy savings opportunity for buildings with cooling towers
 - Large office buildings will see large energy savings effectively cuts cooling tower energy use in half
 - Cost competitive, many designs incorporating more efficient towers without code mandate

Current Code Requirements

- Existing Title 24 Requirements
 - Cooling Tower Mandatory Efficiency: 42.1 HP/GPM
- Existing Model Code Requirements
 - ASHRAE 90.1 2013 Addenda cx [which did not pass] the basis for this code change measure proposes 80 GPM/HP for cooling towers connected to waterside economizers
- Other regulatory considerations
 - Addenda cx undergoing resubmission, due to concerns regarding increased cooling tower cost and potentially pushing designers to pursue air-based systems. California requires cooling towers for all cooling plants >300 tons so it is less of an issue
 - Due to cooling tower requirements in California, this measure recommends expanding the prescriptive requirement to all cooling towers regardless of economizing strategy for additional energy savings
 - Any other issues expected due to larger cooling towers?

Typical Practices

- Current practices
 - 42.1 GPM/HP is based on current ASHRAE requirements
 - ASHRAE requires 40.2 GPM/HP Title 24 slightly more stringent
 - More efficient cooling towers being bought for many projects without code mandate
- Do you agree with this description?

Market Overview and Analysis

- Current Market
 - ~1000 cooling tower products are sold per year statewide
 - Well established market
 - No current incentives beyond Savings By Design
- Market impacts
 - Energy consumption by this product in new construction is estimated to be 2GWH/yr
 - Based on large office prototype building energy use and large office construction statistics
- Market barriers
 - Cooling tower systems will become more costly and take more space
 - Cooling towers required by code for >300 tons cooling plants so negligible affect on sales expected
 - My complicate compliance process by forcing performance method for a large number of tower selections
- Other market information sources we should know about?
- How can we quantify the value of roof space/real estate?

Incremental Cost Estimation

- How we collected costs of base case technology and proposed technology
 - Interviews with equipment manufacturer representatives to find costs for higher efficiency tower
- What components of costs did we leave out?
 - Assumed structural penalties negligible for larger tower
 - Did not consider system redundancies
 - Did not quantify the value of additional space (rooftop or parking lot) used for larger heat rejection equipment
- We found the costs difference to be relatively low, on the order of 10-15 percent increase in cooling tower first costs for more efficient unit
- Do you find these costs to be reasonable?

Methodology for Savings Analysis

- Methodology for energy and demand Impacts
 - Energy impacts calculated through CBECC-Com, and the underlying software engines OpenStudio and EnergyPlus
 - Prototype Buildings
 - Large Office Prototype 500,000 sf
 - Baseline System
 - 42.1 GPM/HP Cooling Tower
 - Proposed System
 - 80 GPM/HP Cooling Tower

Assumptions for Energy Impacts Analysis

- Key assumptions
 - Operating hours: ACM Standard Office From CBECC
 - Fraction of buildings or building types containing targeted technology: All >300 tons cooling plants, assumption is new large office construction
 - All modeling assumptions based on Large Office Prototype building
- Data sources
 - Existing buildings, buildings in design, construction, and testimony from designers and product representatives all inform the modeling inputs used

Incremental Cost Savings

- Approach
 - Incremental cost savings are calculated based on TDV cost savings associated with energy savings over the entire period of analysis

Baseline Cost	Proposed Cost	Savings	% Savings
\$602,520 (\$1.21/sf)	\$598,655 (\$1.20/sf)	\$3,865 (\$0.01/sf)	0.6%
Baseline TDV/sf	Proposed TDV/sf	Savings	% Savings
101.7	99.62	2.08	2.0%

* Results calculated for Climate Zone 12, additional climate zones being considered for stakeholder meeting ** TDV Cost Multiplier: \$0.029/TDV kBtu

Initial Data and Findings

- Preliminary results from savings analysis
 - 50% Heat rejection savings, as expected due to double efficiency
- Preliminary results from cost-effectiveness analysis (Benefit-Cost Ratio)
 - Modest cost impacts, \$30,000 increase for larger cooling tower
 - How to account for loss of roof area?

Preliminary Energy Impacts

Preliminary Energy Savings Estimate				
Annual per Prototype Bldg Electricity Savings* (kWh/-yr)	Annual per per Prototype Bldg Natural Gas Savings* (Therms/yr)	First Year Statewide Electricity Savings (GWh/yr)	First Year Statewide Natural Gas Savings (Million Therms/yr)	Confidence Level (high, medium, low)
24,000	N/A	1	N/A	High

*Results calculated for Climate Zone 12, additional climate zones being considered

Preliminary Cost Effectiveness Estimates

	Benefit (2020\$)	Cost (2020\$)
Total Per Unit Incremental Cost over Period of Analysis		\$30,000
• Incremental first cost (supplies, equipment, installation)		• \$0
• Incremental maintenance cost (replacement equipment, regular maintenance) over period of analysis		• \$0
Per Unit TDV Cost Savings over Period of Analysis	\$58,000	
TOTAL	\$58,000	\$30,000
	(\$0.12/sf)	(\$0.06/sf)
Benefit/Cost Ratio	1	.93

Compliance and Enforcement- Market Actors

- Who would be involved in implementing this measure?
 - Building Owner
 - Architect
 - Energy Consultant
 - Mechanical Designer
 - HVAC Subcontractor / Installer
 - Plans Examiner
 - Building Enforcement Agency / Inspector
 - Manufacturer
- Others?

Market Actor	Task(s)	Success Criteria
Building Owner	 Provide funding for building Provide Owner Project Requirements (OPR) 	 Building completed according to OPR Building passes inspection
Architects	 Develop building details and sections Coordinate equipment sizes with mechanical designer 	 Satisfy owner desires Minimal clarifications Meet project budget
Energy Consultant	 Determine necessary compliance forms Complete compliance documents 	 Project energy goals and code requirements are met Compliance document passes plan examination
Mechanical Designer	 Design mechanical system and details Select equipment 	 Design to meet Title 24 code Do this cost-effectively

• What are we not capturing?

Market Actor	Task(s)	Success Criteria
HVAC Subcontractor / Installer	 Install HVAC system Select correct equipment 	 Meet schedule Complete within budget Passes inspection
Plans Examiner	 Ensures building is designed to code 	 Forms are completed correctly Do this with minimal training
BuildingInspector	 Verify equipment is registered with Title 24 Ensures building is designed to code Issue Certificate of Occupancy 	 Do this quickly Get things right the first time Do this with minimal training
Manufacturer	 Sell products to engineers which meet code 	

• What are we not capturing?

Market Actor	Resource(s)
BuildingOwner	- EnergyCodeAce
Architects	 EnergyCodeAce Building Owner Energy Consultant
Energy Consultant	 CBECC-com compliance software Title 24 Standard and supporting documents EnergyCodeAce CEC hotline
Mechanical Designer	 Energy Consultant Title 24 Standard and supporting documents EnergyCodeAce

• What resources or tools are typically used for compliance?

Market Actor	Resource(s)
HVAC Subcontractor / Installer	 Mechanical Designers EnergyCodeAce
Plans Examiner	 Title 24 Standard and supporting documents EnergyCodeAce
BuildingInspector	 Title 24 Standard and supporting documents EnergyCodeAce Training
Manufacturer	- EnergyCodeAce

• What resources or tools are typically used for compliance?

Strawman Code Change Language

- Title 24 Part 6
- 140.4 PRESCRIPTIVE REQUIREMENTS FOR SPACE CONDITIONING SYSTEMS

Cooling towers connected to chiller condenser water loops must meet the requirements specified in Table 140.4-E

TABLE 140.4-E PRESCRIPTIVE PERFORMANCE REQUIREMENTS FOR HEAT REJECTION EQUIPMENT				
Equipment Type	Total System Heat Rejection Capacity at Rated Conditions	Subcategory or Rating Condition	Performance Required , a ,b, c, d	Test Procedure
Propeller or axial fan Open-circuit cooling towers	All	95°F entering water 85°F leaving water 75°F entering air wb	≥80 gpm/hp	CTI ATC-105 and CTI STD-201

Feedback Request from Stakeholders

- We would like your input...
 - Ideas on Cooling Tower Efficiency Requirements
 - Thoughts on pushing beyond ASHRAE 90.1
- Please provide input by:
 - Calling or emailing CASE Author
 - Emailing info@title24stakeholders.com

Thank you.

Stefan Gracik Integral Group sgracik@integralgroup.com

