Dynamic light-redirecting technology: One look into the future

2019 Daylighting Symposium April 29th, 2019

Luís Fernandes Building Technology Department Building Technology and Urban Systems Division

ENERGY TECHNOLOGIES AREA

Lawrence Berkeley National Laboratory (LBNL)

- Funded by the US Department of Energy through the Office of Science
- Managed by the University of California
- Unclassified research across a range of scientific disciplines
- Employs 4,000+ scientists, engineers, support staff and students (13 Nobel Laureates)

Windows & Daylighting

- Research, development and technical support for energy efficient window products, and daylighting
- Measurement Facilities
 - Thermal measurement lab
 - Mobile Window Test Facility (MoWiTT)
 - Optical Measurement Lab (Optics lab)
 - Advanced Façade Test Bed Facility
- Window software tools development and support
- Algorithm and standards development
- Thermal performance and energy modeling
- Fenestration rating support

Several current trends impact daylighting

Automation, sensing, controls

- Less expensive
- More familiar to building occupants and operators
- Energy efficiency, GHG reduction
 - More familiar and acceptable to occupants
- Health and well-being in buildings
 - Concerns/awareness related to daylight exposure more prevalent in the R&D and design communities

Electric lighting

More efficient/cost-effective but also better able to take advantage of daylight

What's possible in daylighting is expanding

- More cost-effective, reliable automated systems
- Increased occupant embrace of changes in the indoor environment that can be attributed to
 - Concern for the environment
 - Concern for health and well-being
- Focus includes but not limited to energy savings
 - Health and well-being
 - Resilience

Developing a new type of dynamic daylighting system

- Part of larger-scale 3-year project funded by the California Energy Commission
- Overall goals included:
 - Develop new window and façade technologies
 - Develop tools and methodologies to facilitate innovation
- One task focused on daylight redirecting systems

Daylight Redirecting Systems Team

- Eleanor Lee (PI)
- Luís Fernandes (PM/technical lead, computer simulation)
- Howdy Goudey, Ray Karam, Ben Karcher (prototype development)
- Anothai Thanachareonkit, Joshua Mouledoux (experimental testing)

Tilting the daylighting balancing act towards more benefits

- LEDs reducing LPD from 1+ W/ft² to 0.75 W/ft² or less
- Cost/complexity of sensing, controls, dimming greatly reduced
- Greater awareness of health, wellness benefits of daylight
- Significant benefits if daylight delivered beyond perimeter (i.e., deeper than 15 ft from window

Initial goals

Goal

- Cost-effective light-redirecting system
- Deliver daylight to depth of 15-40 ft
- No glare
- Point of departure
 - Variable-spacing venetian blind concept (Rosenfeld, A.H., Selkowitz, S.E., Beam daylighting: an alternative illumination technique, Energy and Buildings 1(1977):43-50.)
 - All incident sunlight is reflected in the right direction!
 - Established principle (venetian blinds) but requires automation
 - Higher likelihood of being cost-effective in 2018 due to greatly reduced automation/controls costs

Fig. 7. Tilt and spacing for reflecting slats for typical winter and summer incident light conditions, for a 20 ft deep room at 40 $^{\circ}N$.

Significant lighting energy savings

Simulations show:

- Significant daylight delivered to 15-40 ft zone from a 2-fthigh clerestory window
- 0.20-0.46 kWh/ft², or 14%-42%, vs. automated reflective blind
- 0.13-0.73 kWh/ft², or 9%-54%, vs. conventional manual blind
- Glare under control
- Cost-effective for moderate incremental costs over conventional blinds

ENERGY TECHNOLOGIES AREA

Variable slat width implementation feasible

 Variable width configuration has same optical efficiency as variable spacing

Mirrored, flat slats appear best

- Laboratory tests showed:
 - Flat slats provide better control of ceiling reflections than curved slats (reflective film courtesy of 3M)
 - Mirrored slats provide more effective light redirection than prismatic slats

Conclusions/Benefits to ratepayers

- A new option for providing more daylight deeper into spaces without glare
- Expands daylight harvesting area by factor of 3
- System is located at the façade and doesn't require additional envelope openings
- Automation cost is reduced by using off-the-shelf control and actuation components

Recommendations/Next steps

Technical development

- Test robustness of controls and actuation solution
- Optimize slat material, geometry and surface finishes
- Develop options for miniaturization and integration into glazing
- Commercial development
 - Continue pursuing commercial development options
 - Refine mature product cost estimates

- What's possible in daylighting is expanding
- An automated redirecting blind system can expand sidelit area threefold

Thank You

Lawrence Berkeley National Laboratory

Luís Fernandes

llfernandes@lbl.gov

ENERGY TECHNOLOGIES AREA