Daylighting commercial buildings: Case studies and simulation models

The Daylighting Symposium:

California Investor-Owned Utilities in partnership with the

National Electrical Manufacturers Association Daylight Management Council

Sacramento, California, April 29, 2019

Eleanor S. Lee, Taoning Wang, Christoph Gehbauer, Andrew McNeil, Luís Fernandes, Jacob Jonsson, Stephen Selkowitz, Sabine Hoffmann, Anothai Thanachareonkit, Jordan Shackelford, Samir Touzani, Arman Shehabi, Lawrence Berkeley National Laboratory; Gregory Ward, Anyhere Software

CALIFORNIA ENERGY COMMISSION

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Where do we want to go?

- Reduce building energy use: one of many "stabilization wedges" towards reducing carbon emissions¹
- Significant progress is still needed to meet California's requirements for greenhouse gas (GHG) emission reductions of 40% below 1990 levels by 2030 and 80% below 1990 levels by 2050.
- How does daylighting contribute to California's goals?

¹ **Pacala, S. and R. Socolow**. 2004. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. *Science* 305: 968-972.

C6.5 Solar and Visible Aperture.			+ CU3 × (VS × CDH80) ⁺ + CU4 X DR)		Co.8.3 Heating Factor. The heating factor for		5	JU
C6.5.1 Solar and Visible Aperture of Vertical Fenes- tration. The visible aperture (VA), solar aperture for cooling (SA ₄), and solar aperture for heating (SA ₄) of each vertical for the state of the memory and the state of the solar of			$\begin{array}{l} \text{CLUO} = \text{Area}_{gouswall} \times \text{UO} \times [\text{CUO1} \times \text{EA}_{C} \times \text{VS} \times \text{CDD50} \\ + \text{CUO2} \times \text{G} + \text{CUO3} \times \text{G}^{2} \times \text{EA}_{C}^{-2} \times \text{VS} \times \text{CDD50} + \text{CUO4} \\ \times \text{G}^{2} \times \text{EA}_{C}^{-2} \times \text{VS} \times \text{CDD55}] \end{array}$		faces in the zone shall be calculated using Equation HEAT = 0.007669 × [HLU + HLUO + HLXUO + + HLG + HLS + HLC]			
fenestration shall be calculated using Equations C-5, C-6, and C-7.		toits (), (), and	CLXUO = Areagrosswall / UO × [CXUO1 × EA _C × VS		where			10
$\overrightarrow{VA} = \operatorname{Area}_{ref} \times \operatorname{VLT}_{ref} \times (1 + \operatorname{PCC1} \times \operatorname{PF} + \operatorname{PCC2} \times \operatorname{PF}^2) (C{\text{-}}5)$			\times CDD50 + CXU02 \times EA _C \times (VS \times CDD50) ² + CXU03 \times G \times CDD50 + CXU04 \times G ² \times EA _C ² \times VS \times CDD50		$HLU = Area_{opaque} \times U_{ow} \times [HU1 \times HDD50 + H) \times (VS \times HDD55)^2$		(<i>,</i> 0 _
SAc=Area	r×1.163×SHGC×(1-PCC1×PF+	+ PCC2 × PF ²)(C-6)		+ CXU05 × G ² × CDD65]	HLUO = Area	* Y UO × (HUO1 × HDD50 +	2	
SA _b =Area _v	e ^e ×1.163×SHGC×(1+PCH1:	ASHE	RAE 9	0.1-1999 (& 20	04)	+ HUO3 × EA _H × VS × HDD65]	M)	20
where					,	mosswall × {(I/UO) × [HXUO1 ×	e J	<i>i</i> 0 —
Area vf	= glazing area of the ve	Apper	ndix (C: Building Enve	ope	HXUO3 × EA _H ² × VS × HDD65	ns	
SHGC	 the solar heat gain co fenestration assembly 		_		11111	100 × SHMC × [HM1 + HM2 × G	2	
VLT _{vf}	 the visible light transt fenestration assembly 		Trac	de-off Option		$G^2 \times EA_{H^2} \times VS \times HDD50 + HM$ $65 + HM5 \times UO \times HDD50 + HMi$ $i^2 + HM7 \times EA_{H^2} \times VS \times HDD65$	r icit	20 —
PF	= the projection factor 1					ut × (G× [HG1 × HDD65 + HG]	^o	
PCH1 PCF	on the vertical jenestr	explicitly defi	ines rela	tionship between façade, lig	ghting and	× EA _H × VS × HDD65 + HG4 ×	ă	
PCC1, and	PCC2 = overhang projectic vertical fenestratic			HVAC		$50] \times G^2 \times [HG5 \times HDD65 + HC EA_H^2 \times VS \times HDD65] \}$	- 1	0-
K	Table C6.5.1. $Id_{zore} = \left(\Phi 1 + \left(\frac{\Phi 2 \times DI \times VA}{Area_{fee}}\right)\right)$	(C-10)	× (VS × (VS × Cl	x CDD65) ² + CC7 × VS × CDD50 + CC8 DD50) ² + CC9 × (VS × CDH80) ² + CC10 × VS + CC11 × DR + CC12 × DR ² + CC13]	× (VS × HD	$\begin{array}{l} {}_{\mathrm{isull}} \times \{\mathrm{EA}_{\mathrm{H}} \times [\mathrm{HS1} \times \mathrm{VS} \times \mathrm{HDD6!} \\ \mathrm{D50})^2] + \mathrm{EA}_{\mathrm{H}}^2 \times [\mathrm{HS3} \times \mathrm{VS} \times \mathrm{HD1} \\ + \mathrm{HS4} \times \mathrm{VS} \times \mathrm{HDD65}] \end{array}$		
×	(1 - e((40+44×DI)×VA)/Area)	where		HLC = Area	posswall × [HC1 + HC2 × HDD65 +		0 0
where Area (mag) =	total fenestration area of the ver	rtical fenestration	Areagrosswal	1 = total gross area of all walls and vertical fenestration in the zone, including opaque and	× HDD65* + F × VS ×	HDD65 + HC7 × (VS × HDD50) ²]		0 0.1 0.2
168	or skylight assemblies in the zo	one		fenestration areas	where VC	an and a line in a data to have an array of		Color A
VA =	 total visible aperture of the vert or abuliable in the room at calc 	tical fenestration	Alcaopaque	= total opeque area of an watti in the zone	SHMC = sum of	the HMC from Equation C-12 for ea		Soldi A
Area _{unface} = gross wall area of the zone for vertical		(including those of mass construction) in the		wall in the zone		5	0 1	
fenestration or gross roof area of the zone for		zone		EA _H = effective solar aperture fraction for zone ca using Equation C-17.			b	
sayitgits. and the coefficients \$\Phi\$1 through \$\Phi\$4 are defined in Table C6.6.		v5 = annual average daily incident solar energy on surface					5	
	TABLE C6.6		DR	= average daily temperature range for the warmest		$EA_H = \frac{\sum SA_H}{Area}$		
	Coefficients for Calculating	g K _d	110	month		parts	4	v⊣v
				as were reasons or restored of spacets could and	ere - share	n of NA- from Equation C-7 for all u	Г Ч	Ø
							≥	
							5	

Basis for envelope trade-offs in Title-24 code: LBNL DOE-2 study

http://eta-publications.lbl.gov/sites/default/files/16770.pdf (1983)

Carmody, J. et al., Window Systems for High Performance Commercial Buildings, New York: W.W. Norton and Company, Inc., 2004.

Challenge

Optimize tradeoffs between HVAC savings, visual + thermal comfort vs. Lighting energy savings, daylight + view

Case studies

Methods of problem solving and evaluation over different phases of the building life cycle

Case study #1: Envelope design, new construction

Southeast Aerial

Output

Achieve sustainability and indoor environmental quality objectives in daylit occupied spaces in the new B40 building.

Key questions at this stage of the design

- What is the **daylight quality** in the spaces given the current design?
- What is the **daylight availability** for the current design
- What changes could be made to the core and shell design to improve daylight quality and minimize use of shades?
- When are shades needed to control direct sunlight on the workplane and glare?

Parameters

Window size and aperture location, glazing selection, indoor shade selection, daylight redirecting strategies, room finishes, furniture location

Floor 7 DA300

Glass scenario 1 (VRE 24-54, 59 upper) vs 2 (VNE 1-63, lower graph)

Update #2, 2/15/17 from 2/1/17 analysis; fixed walls, 8a-4p occ, glass type change

Floor 7 DGP – Views C-E (no shades)

View C (east/west) View 3 ft from window needs shades to control glare from equinox to equinox (e.g., manual or automated with occupancy sensor)

View D (east) Needs shades to control glare in the morning through out the year

View E (north) View 5 ft from window requires occasional shades to control glare between 7am-7pm

Basic Design Progress Set (January 27, 2017); Sustainability Meeting: February 1, 2017

Floor 3, south, 6 ft from window

Case study #2: New construction – Following through on specifications, construction, and commissioning

Broaden opportunities for daylight: Control sunlight, bring in diffuse daylight, scatter the light within the interior

Test Procedure

 Testing three facade orientations: South, West, and East

South Facade Orientation 208° (28° West of South)

West Facade Orientation 298° (28° North of West)

East Facing (testing) Orientation 242° (28° South of West)

East Facade (B35) Orientation 118° (28° South of East)

http://eta-publications.lbl.gov/sites/default/files/lbnl-1005151.pdf

1570: Shadow Grey

FACADE	SHADE COLOR	95% LIMIT	TOP 5% BAND	CLASS
WEGT	Light	0.285	0.299	А
WEST	Dark	0.270	0.283	А
FACT	Light	0.353	0.406	В
EAST	Dark	0.345	0.375	А
COLITI	Light	0.292	0.301	А
SOUTH	Dark	0.274	0.289	А

1

0.8

0.6

0.4

0.2

0

0

0.1

Cumulative Percent

95%

Recommendations

- We provide starting point dependency values based on FLEXLAB
- Lighting in the building ends should be influenced by three photocells, one at each facade.

Glare | HDR Camera Locations, South Area

Glare | South #1 3/25-4/3, 4/14-4/20 & 5/1-5/7

Cumulative DGP 3/25-4/3, 4/14-4/20 & 5/1-5/7

Cumulative DGP Statistics, Position #1, South Area

95% DGP Threshold	0.335		
Average DGP within top 5% band	0.346		
Comfort Class Rating	A		

Case study #3: Retrofit construction – Living Lab investigation of LED + automated shading controls

Demonstration site: 2.14 Mft², 43-story office building, 90.1-1999 compliant, LEED Gold certification, occupied in 2009

<u>https://facades.lbl.gov/nyclivinglab</u> <u>http://eta-publications.lbl.gov/sites/default/files/nyc-living-lab-final-report.pdf</u>

Daylight-controlled dimmable lighting

Linear diffuser parallel to window

Automated roller shades

Open plan work area

Thermostat

Daylight

Daylight illuminance levels exceeded 200-300 lux for 47%, 38%, and 25% of the monitored period at the three zone depths of 2.5, 9.9, and 17.2 ft from the window.

Visual Comfort

Time-lapsed HDR images on equinox and solstice days, 7AM-7PM

cd/m2 5623.413 1778.279 562.341 177.827 56.234 17.782 5.623 1.778

10/25/15-13:40

DGP: 0.326

441263.738

Visual comfort

Please rate the level of glare in your usual workstation since February 1, 2016.							
	Intolerable	Uncomfortable	Acceptable	Perceptible	Not Perceptible		
From the windows	\bigcirc	· 🔿	>	\bigcirc	\bigcirc		
From the lights	\bigcirc	\bigcirc	\diamond	• • • • • • • • • • • • • • • • • • •	\bigcirc		
Other bright surfaces	0	\bigcirc	\diamond	0 🔶	0		
	γ						

Survey responses: reference n=2-8; test n=4-30 subjects Occupant responses were within 2.5-3.1 on average, where 3.0="acceptable" glare levels

> Reference (Floor 17)

Living Lab (Floor 23)

What defines high-performance? **Thermal comfort** +1% increased occupancy rate? **Visual comfort** +1% increased **Natural daylight** productivity? **Outdoor views Sustainable Energy efficient**

"Goldman Sachs was interested in reducing energy use, but we also wanted to significantly improve the environmental quality of our offices." – Cindy Quan, Goldman Sach's head of environmental, social and governance for corporate services and real estate.

Case study #4: Persistence of savings – Postoccupancy evaluation 5 years later

Frequency of manual override of automated shades (600,000 ft² installation)

Figure 15. Distribution of the number of manual overrides per motor group for all motor groups on all floors during work hours (8:00 AM to 6:00 PM) on weekdays for one year.

Energy and demand savings (20th floor)

- Site Electricity
 - 8.16 kWh/ft²-yr use
 - 2.58 kWh/ft²-yr savings
 - 43% lighting savings
 - 23% cooling savings (despite larger WWR)
- Site Heating
 - 1.31 kBtu/ft²-yr use
 - 51% savings
- Peak electricity demand
 - 2.65 W/ft² use
 - 1.08 W/ft² savings (22%)
 - 628 kW reduction total
 - 0.49 W/ft² lighting reductions during summer

Outcome of occupant surveys – occupants who understood the basis for energy efficiency measures were more likely to be satisfied with the measures

http://eta-publications.lbl.gov/sites/default/files/nyt-lbl-occu-satisfaction.pdf

Case study #5: Retrofit with switchable electrochromic windows

<u>http://eta-publications.lbl.gov/sites/default/files/gpg-portland-lee.pdf</u> <u>https://www.gsa.gov/governmentwide-initiatives/sustainability/emerging-building-technologies/published-findings/building-envelope/</u>

Monitored outcomes

- 36% annual lighting energy savings due to daylight
- 57% reduction in weekend
 VAV cooling load when in setback mode with tinted EC
- 85% and 92% of occupants preferred EC windows over existing windows in Phases I&II, respectively.
- 40% more blinds fully raised in EC area compared to original windows in private offices

Figure 7. Suggested direction of material science R&D for dynamic glazing materials. An ideal switchable chromogenic glazing would have fast switching, narrowband near-infrared properties with Tvis>0.50 when clear/ bleached. Note: EC=electrochromic, Gasch=gasochromic, BB=broadband, NB=narrowband.

http://eta-publications.lbl.gov/sites/default/files/ch6.3-innovative_glazing_lbnl_2001193_eslee.pdf

Case study #6: Operable, coplanar exterior shading

Between 6 types of exterior shades: 78-94% reduction in window heat gains -25% to 36% reduction in lighting energy use 2-32% of day with glare

compared to low-e glazing with indoor shade

E.S. Lee et al., High Performance Building Façade Solutions, Final project report, California Energy Commission, CEC 500-06-041 (2009), Table 6. https://facades.lbl.gov/sites/default/files/lbnl-4583e.pdf

Case study #7: Non-operable, coplanar exterior shading

Hilton Foundation, Agoura Hills Stainless steel roller shade (shd 6) (picture: ZGF architects)

Li Ka Shing, UC Berkeley campus Aluminum louvers above window Aluminum louvers in shutters (shd 8) (picture: ZGF architects)

29.7

Out off angle = 19.3*

19.3*

6.4mm

5.0mm

1.4mr

shd 8

Case study #6: Fixed, angular selective, between-pane shading

indoor

© Panelite

Inclined columnar nanostructures (MJ. Brett, J.Mater.Sci 24(1989); GW Mbise et al. J. Phys. D: Appl. Phys. 30(1997))

2 angular selective shading system (G1) with outdoor view (solar cut-off angles in image above)

Between-pane shading systems with daylighting: 32-55% savings compared to Title 24 2008

3 annual source energy use for angle-selective shade (G1, H1, I1, H1T) compared to Title 24 2008 & 2013 code

Case study #9: Non-coplanar shading systems

i = V T <mark>F</mark> D s

http://eta-publications.lbl.gov/sites/default/files/ncp_lbnl-final_lee_0.pdf

Case study #10: Daylight redirecting systems

Passive optical light shelves, prismatic films, dynamic metamaterials

https://facades.lbl.gov/optical-light-shelves https://facades.lbl.gov/dynamic-metamaterials http://eta-publications.lbl.gov/sites/default/files/lbnl-2001167.pdf http://eta-publications.lbl.gov/sites/default/files/lbnl-2001051.pdf http://eta-publications.lbl.gov/sites/default/files/lbnl-187135.pdf http://eta-publications.lbl.gov/sites/default/files/lbnl_dual-zone_shades_lbnl2001196.pdf http://eta-publications.lbl.gov/sites/default/files/passive_optical_light_shelf.pdf

Case study #11: Tubular daylighting devices

Validation of matrix algebraic methods of modeling TDDS in FLEXLAB

Lee, E. S., et al. 2019. High-Performance Integrated Window and Façade Solutions for California. California Energy Commission (to be published).

Case study #13: Smart, integrated systems

Building-to-grid, intelligent controls for advanced façade systems

https://facades.lbl.gov/model-predictive-controls

Lessons Learned

- Tremendous innovation from the facades sector!
- Complex optimization problem: all techs have pros and cons → it's what matters most to the client and application (i.e., capital cost, operating cost, maintenance, IEQ)
- Generational or sector shift from bottom-line economics to the happiness + healthiness quotient
- Organizations are getting serious about GHG/ energy-efficiency goals and are pushing the architectural-engineering industry to be serious too (backed by financial penalities)

What's *driving* high-performance today?

Energy efficient Demand responsive GHG/ Sustainable Resiliency Economic competitiveness Pressure to lower EUI

What can we do to help?

Enable industry to make informed decisions

- Validated building physics models (daylight, solar gains, heat transfer)
- Validated human factors models (comfort, IEQ/ view, health)
- Certified, standardized product database for plug and play, apples-to-apples analysis (e.g., NFRC, AERC)
- Facility management tools for commissioning, fault diagnostics, and continuous M&V; provide a feedback loop to industry

Model development and validation

Matrix algebraic methods for speedy annual simulations

IEA SHC Task 61C

Attachments Energy Rating Council

 Define standard methods for generating product data for complex fenestration systems in support of modeling daylight and solar radiation impacts in buildings such that simulated values agree with measured data to within an RMSE<5-10%.

http://task61.iea-shc.org/meetings https://www.radiance-online.org/community/workshops/2018loughborough/presentations/03-HighResBSDFs.pdf

Windows and Envelope Materials Group | Building Technology and Urban Systems Division © 2019 Energy Technologies Area. All rights reserved. Lawrence Berkeley National Laboratory | Disclaimer | Webmaster

https://facades.lbl.gov/ eslee@lbl.gov