

Agenda

Background	5 min
Market Overview and Analysis	5 min
Technical Feasibility	5 min
Cost and Energy Methodology	2 min
Compliance and Enforcement	2 min
Proposed Code Changes	2 min
Discussion & Next Steps	10 min

Background

- Code Change Proposal
- 2022 Code Requirements
- Context and History

Proposed Code Change

Proposing to make DCKV systems a requirement for kitchen ventilation hood systems with exhaust flow rates exceeding 5,000 cfm

- Implementing DCKV is currently listed as 1 of 4 options for kitchen hood systems that exhaust greater than 5,000 cfm
- Explicit language to establish what constitutes a "kitchen/dining facility" and how it contributes to the 5,000 cfm total exhaust airflow under a single fan, or for an entire kitchen facility, or for a single hood?
- Modification of Section 140.9 Kitchen Ventilation

Current Code Requirements

Kitchen hood systems with exhaust airflow greater than 5,000 cfm must meet **one of the following conditions**:

- i. Use a DCKV system
- ii. Reuse transfer air for the replacement air
- iii. Use heat recovery devices
- iv. Use makeup air that is minimally heated or cooled

Current Code Requirements

Existing Requirements in Title 24, Part 6:

- Required outdoor air-ventilation and air-distribution system design must be identified on plans
- All air supplied to occupiable spaces through mechanical systems must be filtered before thermal conditioning
- Natural ventilation allowable spaces are determined by the location and opening size for the ventilation, and the ceiling height of the space to be ventilated

Context and History

Demand Controlled Kitchen Ventilation (DCKV):

A system that automatically adjusts the airflow of a ventilation hood to match the needs of the kitchen. This reduces energy use when there is light or no cooking activity.

There are various technologies for determining kitchen demands:

- Temperature sensors
- Infrared sensors
- Optical sensors
- Direct appliance communication

Context and History

Why are we proposing this measure?

- Significant savings opportunity
- Reduced noise level ٠
- Improved comfort ٠
- Advancements in technology

Market Overview

- Current Market Conditions
- Market Trends
- Potential Market Barriers and Solutions

Market Overview and Analysis

Current Market

• Utility incentive programs are currently available for this measure, which have shown that current participation is strongly driven by rebates given the high cost of systems

Market Trends

 Kitchen consultants are increasingly adopting DCKV into their designs, with some interviewed consultants specifying DCKV in all designs

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

Do you agree with this description? What else should be known?

Market Overview and Analysis

Market Barriers and Potential Solutions

- Initial purchase and install cost:
 - → Solution: Rebate programs and dissemination of payback analysis results, to inform the public on how costs could be offset with energy savings
- Lack of DCKV familiarity and concerns on ventilation efficacy
 - → Solution: Educational programs and outreach that detail the savings potential and ventilation performance of DCKV units

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

Do you agree with this description? What else should be known?

Technical Considerations

- Technical Considerations
- Potential Barriers and Solutions

Technical Considerations

Technical Considerations

- Proposal codifies what is becoming standard design practice, implementing DCKV on any ventilation hoods greater than 5000 cfm
- Numerous options available for integrated DCKV or add-on control units for ventilation hoods without DCKV options

Technical Barriers and Potential Solutions

- · Possible need for regular maintenance and calibration of sensors
- System reliability, such as clogged sensors
 - → Solution: Require that all DCKV systems have manual override capability in case the demand control is having issues
- · Potential for users to continuously override sensor functions
 - → Solution: Ensure that DCKV always maintains sufficient airflow to maintain capture performance

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

Do you agree with this description? What else should we know?

Energy and Cost Impacts Per Fan Horsepower (HP)

Methodology and Assumptions

- Energy Savings Methodology and Results
- Cost Impacts Methodology and Results
 - Incremental costs
 - Energy cost savings

Preliminary Energy Savings Estimates Per HP

Annual Natural Gas Savings (therms/yr)	
	67
Peak Demand Reduction (W)	590
Annual Life Cycle Energy Cost Savings (kBTU/yr)	?
Annual Source Energy Savings (kBTU/yr)	?

Key Assumptions:

- 339 days of operation per year
- Ventilation operating an average 14 hours per day (9am - 11pm)

	Zone	(therms/yr)	Expected Heating Energy Savings (therms/yr)
Climate Zone	1	3,623	627
	2	1,906	330
	3	1,762	305
	4	1,254	217
	5	1,594	276
	6	735	127
	7	633	110
	8	570	99
	9	757	131
	10	861	149
	11	1,647	285
	12	1,567	271
	13	1,404	243
	14	1,555	269
	15	371	64
	16	4,110	711

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

Incremental Cost Information

We collected costs of base case technology and proposed technology through interviews with manufacturers, distributors or contractors

What was included in the costs (still looking for installation and maintenance costs)

Costs were found to be ...

Baseline Cost: \$6,151 per HP

DCKV Cost: \$9,462 per HP

Are there any costs that are unaccounted for or look inaccurate?

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

20

Prompts for discussion:

- · What components of costs did we leave out?
- Do you find these costs to be reasonable?
 - Willing to discuss costs individually.

Incremental Per HP Cost Over 15 Year Period of Analysis

Cost data came from:

- Stakeholders
- SCE Data (2013-2017)

Highlight what we need from stakeholders.

Statewide Energy Impacts

Methodology and Assumptions

Statewide Energy Impacts
Methodology

Statewide Energy Impacts Methodology

The Statewide CASE Team estimates annual statewide impacts by multiplying **A x B x C**:

- A. per-unit energy impacts (discussed in previous section)
- B. number of units of new construction/additions/alterations of each applicable building type
- C. portion of affected units in each climate zone

Example:

Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)

24

Education Health Care	100% 100%
Health Care	100%
Correctional Facilities	
Correctional racinties	100%
Military Installment	100%
Recreational Services	100%
Lodging	100%
Commercial Cafeteria	100%
Grocery Retail	100%
Quick Service Restaurants	80%
Full Service Restaurants	90%

Compliance and Enforcement

- Design
- Permit Application
- Construction
- Inspection
- Revisions to Compliance Software

Compliance and Verification Process

3. Construction Phase

 DCKV system installed in accordance with all minimum requirements listed in section 140.9 (b)

4. Inspection Phase

- *Existing* Kitchen exhaust systems with greater than 5000 cfm operating under a single fan not required to implement DCKV.
- New Kitchen exhaust systems with greater than 5000 cfm operating under a single fan must demonstrate functional implementation of DCKV and must be capable of conforming with all fail safe measures.

Market Actors

Market actors involved in implementing this measure include:

- Manufacturers (eg. Hood mfrs., retrofit mfrs.)
- Building Designers Kitchen Designers
- Building Owners
- HVAC designers and contractors

What we need from market actors:

- Concerns with adoption of proposed DCKV codes and standards changes
- Price information for hood systems w/ and w/out DCKV systems as well as retrofit solutions
- Data regarding efficacy of DCKV implementation

Review of Code Language Markup

Draft Code Change Language

Draft Code Change Language	
Draft code language available for review in the Handouts tab and downloadable. Provide Feedback to CASE Author by [Date – coordination team to update].	
Presented at Utility Sponsored Stakeholder Meeting on February 9, 2023 Demand Control Kitchen Ventilation (DCKV)	31

Discussion and Next Steps

We want to hear from you!

- Provide any last comments or feedback on this presentation now verbally or over the chat
- More information on pre-rulemaking for the 2025 Energy Code at https://www.energy.ca.gov/programsand-topics/programs/building-energy-efficiencystandards/2025-building-energy-efficiency

Comments on this measure are due by xx. Please send comments to info@title24stakeholders.com and copy CASE Authors (see contact info on following slide). Coordinatic presentatio info for CAS

Coordinatic stakeholde d

Thank You

Russell Hedrick Title 24 Stakeholder 925-359-9320 rhedrick@frontierenergy.com

Edward Ruan Title 24 Stakeholder 925-359-9343 eruan@frontierenergy.com

