

TITLE 24, PART 6

2025 CODE CYCLE

Pool and Spa Heating

Codes and Standards Enhancement (CASE) Proposal Single-Family, Multifamily and Nonresidential | Water Heating

Helen Davis and Sean Steffensen May 18, 2023

Utility Sponsored Stakeholder Meeting, Round 2

Acronyms / Expanded Terms

- AHRI = Air-Conditioning Heating and Refrigeration Institute
- BCR = Benefit to Cost Ratio
- CALSSA = California Solar & Storage Association
- CASE = Codes and Standards Enhancement
- CEC = California Energy Commission
- COP = Coefficient of Performance
- CPSA = California Pool and Spa Association
- CSI = California Solar Initiative
- CZ = Climate Zone
- DOE = U.S. Department of Energy
- GHG = Greenhouse Gas
- HPPH = Heat Pump Pool Heater
- ICC-SRCC = International Code Council Solar Rating & Certification Corporation
- LSC = Long-term Systemwide Cost
- MF = Multifamily Buildings
- NR = Nonresidential Buildings
- NRDC = Natural Resources Defense Council
- NREL = National Renewable Energy Laboratory
- PHTA = Pool & Hot Tub Alliance
- PV = Photovoltaic
- RASS = California Residential Appliance Saturation Study (2019)
- SF = Single-Family Buildings
- TDV = Time dependent Valuation

Agenda

Summary of Stakeholder Feedback

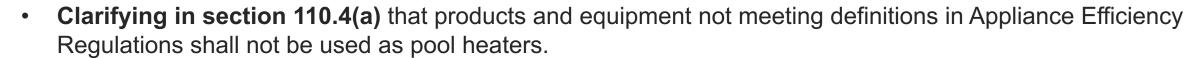
Cost-effectiveness, Energy Savings and Statewide Impacts

Data Gaps and Additional Feedback Requested

Next Steps

Code Change Proposal

- Code Change Proposal
- Code Change Language

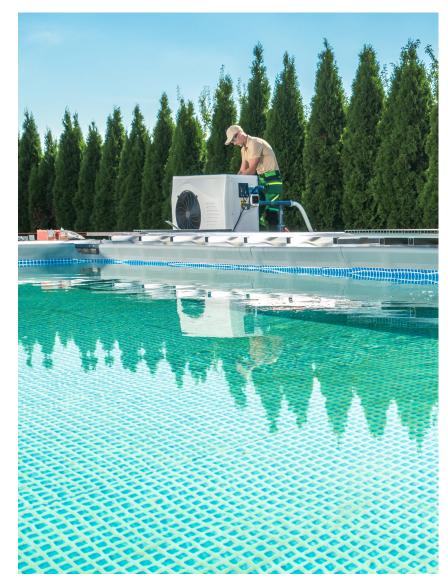

Proposed Code Change

Draft code language for this measure in Handouts.

Description of changes:

- New section 110.4(c) with three options for compliance applicable to SF, MF, and NR applications for new construction and when pool/spa heating is added:
 - Requiring solar thermal pool heating equal to 65% of pool surface area for NR and MF, and 60% for SF; or
 - A minimum COP and sizing provisions for HPPHs prior to May 2028 and an integrated thermal efficiency requirement thereafter, or
 - Deriving at least 60 percent of the annual heating energy from onsite renewable energy or site recovered energy.

Note: existing pool heaters in SF are exempt.



- Cleanup of section 150.0(p) to account for federal actions taken on pool pumps.
- Proposing a new Appendix JA15 with criteria specific to new section 110.4(c).

Summary of Draft Code Revisions Since Round 1

- HPPH option is revised to account for recently issued DOE pre-published final rule.
 - No longer requiring COP at Low Air Temperature-Mid Humidity rating condition.
 - Referencing the DOE integrated thermal efficiency metric starting in 2028.
- HPPH sizing calculation in JA15 was revised to account for pool volume instead of pool area.
- Solar option updated to:
 - Remove orientation requirements.
 - Reduce required solar collector area.
- Clarifying the intent of Table 100.0-A through proposed revisions to sections associated with NR buildings.

Poll

Open ended answers: What are your concerns with the proposed code language?

Multiple choice option: Do you support the proposed code language?

Yes, fully support

Some minor concerns

Concerned

No, opposed to this proposed change

Undecided or need more information

Summary of Stakeholder Feedback

- Summary of Feedback Received
- Measure Evolution
- Potential Barriers and Solutions

Summary of Feedback Received

- Received comments from AHRI, Aquatherm Industries, Inc., ICC-SRCC, PHTA & CPSA, CALSSA, Rheem, FAFCO, Inc, Fluidra, NRDC, UMA Solar and HotSun Industries, Inc. Most comments have resulted in continued dialogue.
- Comments on:
 - Code language
 - The use of "and" vs. "or"
 - Solar collector shading, position, and size
 - Definitions
 - References to applicable standards
 - On-site renewable energy
 - Design guidance for HPPH capacity vs. surface area
 - Pumping guidance and terminology
- THANK YOU!

Evolution of the Measure

- Insulation and variable speed pumping requirements will not be included for this code cycle, interested in gathering information for future code cycles
- Code language clean up included to align with DOE consumer pool heaters, dedicated-purpose pool pumps, and portable electric spa rulemakings
- Code language has been heavily modified since the February 1 stakeholder meeting based on stakeholder comments and the DOE consumer pool heater standard pre-published final rule.
- Looking for further stakeholder comment on the analysis, assumptions, and results

Barriers and Solutions

- Stakeholder comment that solar thermal collectors would compete for roof space with photovoltaic (PV) panels mandated by all electric codes.
- Statewide CASE team analyzed the roof space of the CEC SF building prototypes.
- Statewide CASE team reduced required solar collector area to improve ability of building to accommodate PV and solar collector requirements.

Building Prototype	Model Picture	Approximate Roof Size (Sq ft)	Useable roof size (sq ft) (1/3 of roof size)	Size of Photo Voltaic Array (sq ft)	Size of Solar Thermal Array (sq ft)	Excess or deficit roof area (sq ft)
2100 New Construction		2235	745	105-225	264	256-376 excess space
2700 sq ft new construction		1437	478	105-225	264	109 excess to 11 deficit
1665 sq ft exist. building		1756	585	105-225	264	96 to 216 excess

Open ended question: Are there other barriers or concerns we need to address?

Cost Effectiveness and Energy Savings

Methodology and Assumptions

- Energy Savings Methodology and Results
- Cost Impacts Methodology and Results
 - Incremental costs
 - Energy cost savings

Preliminary Energy Savings Estimates - Per Pool

	NR and MF New Construction &	NR and MF	SF New Construction &	
Metric	Additions	Alterations	Additions	SF Alterations
Benefit-Cost Ratio Range (varies by climate zone and building type)	1.2- 10.3	1.2- 10.3	0.5- 3.9	0.5- 3.9
9 / /				
First-year Statewide Electricity Savings (GWh)	-	-	-	_
First-year Statewide Peak Electrical Demand Reduction (MW)	-	-	-	-
First-year Statewide Natural Gas Savings (million therms)	0.8	7.2	1.5	3.3
First-year Statewide Source Energy Savings				
(million kBtu)	70	650	140	300
First-year Statewide LSC Electricity Savings (million 2026 PV\$)	-	-	0	0
First-year Statewide LSC Gas Savings (million 2026 PV\$)	40	380	170	380
First-year Statewide Total LSC Savings			170	300
(million 2026 PV\$)	40	380	170	380
First-year Statewide Avoided GHG Emissions				
(Metric Tons CO2e)	4,400	40,000	9,000	20,000
First-year Statewide Monetary Value of				2 - 2 2 2 2 2
Avoided GHG Emissions (\$)	550,000	4,900,000	1,100,000	2,500,000

Key Assumptions:

- Continuous heating for NR and MF
- Varied heating for SF
- Analyzed Indoor,
 Outdoor,
 Covered,
 Uncovered,
 Average and
 Olympic-sized
 pools

Incremental Per 30,000 Gallon Pool Cost

Over 30 Year Period of Analysis

Incremental First Cost		
Equipment and Installation	\$5,250	
Commissioning	\$0	
Other	\$0	

Incremental Maintenance Cost		
Equipment Replacement \$5,250		
Annual Maintenance	\$53	

Cost data came from:

CSI Thermal
Program Solar
Water Heating
Database

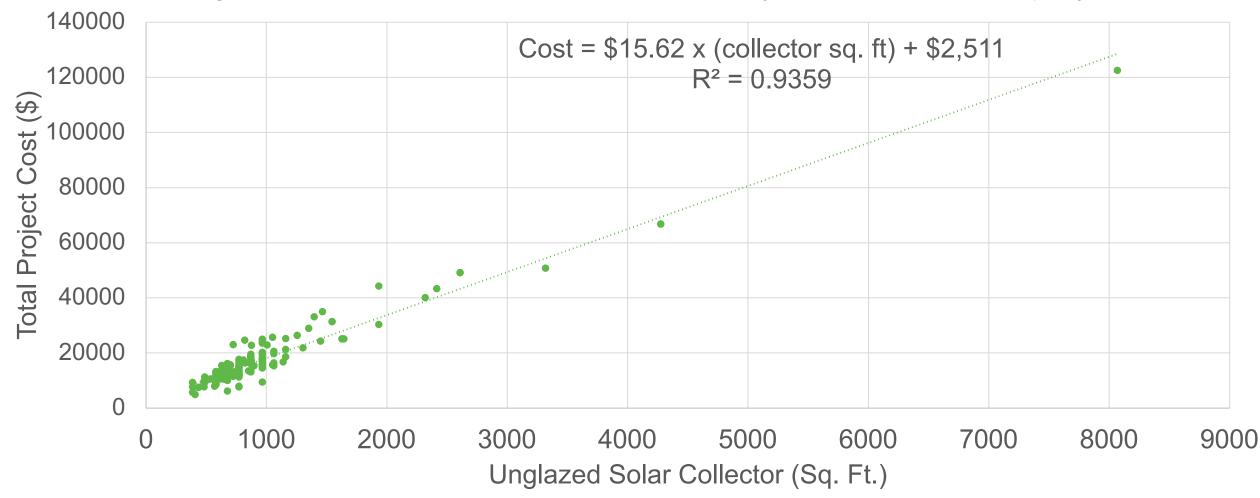
Total incremental cost over 30-year period of analysis: \$8,713 (\$2026 Present Value)

Incremental Per Olympic Pool Cost

Over 30 Year Period of Analysis

Incremental First Cost		
Equipment and Installation	\$139,214	
Commissioning	\$0	
Other	\$0	

Incremental Maintenance Cost		
Equipment Replacement	\$139,214	
Annual Maintenance	\$1,437	


Cost data came from:

CSI Thermal
Program Solar
Water Heating
Database

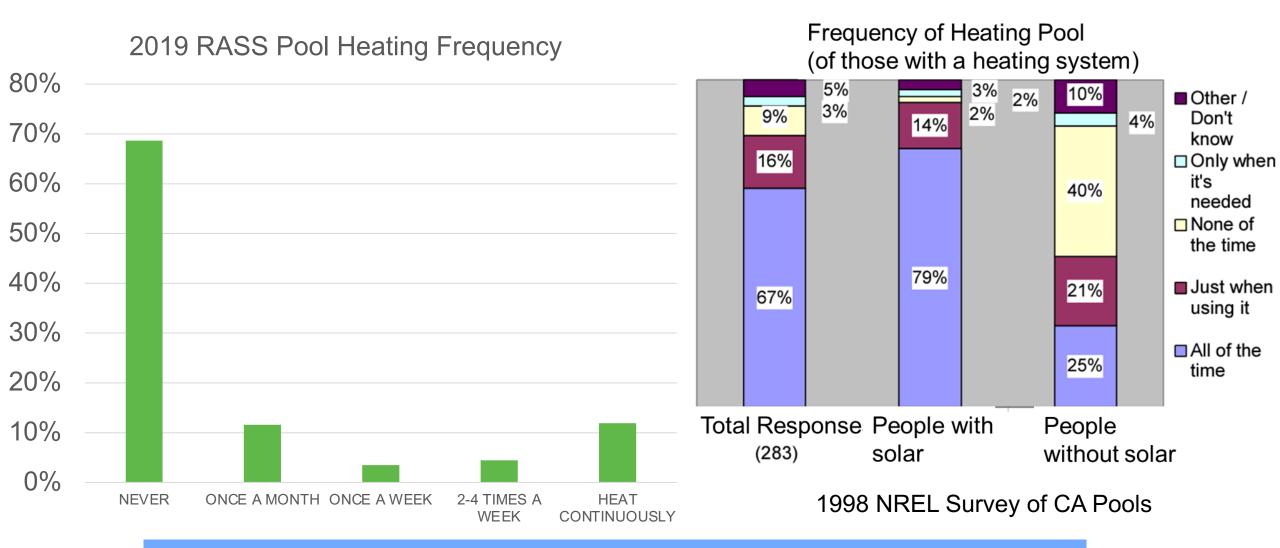
Total incremental cost over 30-year period of analysis: \$231,053 (\$2026 Present Value)

CSI Thermal Solar Collector Project Costs

Unglazed Collector Costs from a Solar Thermal System Installation Company

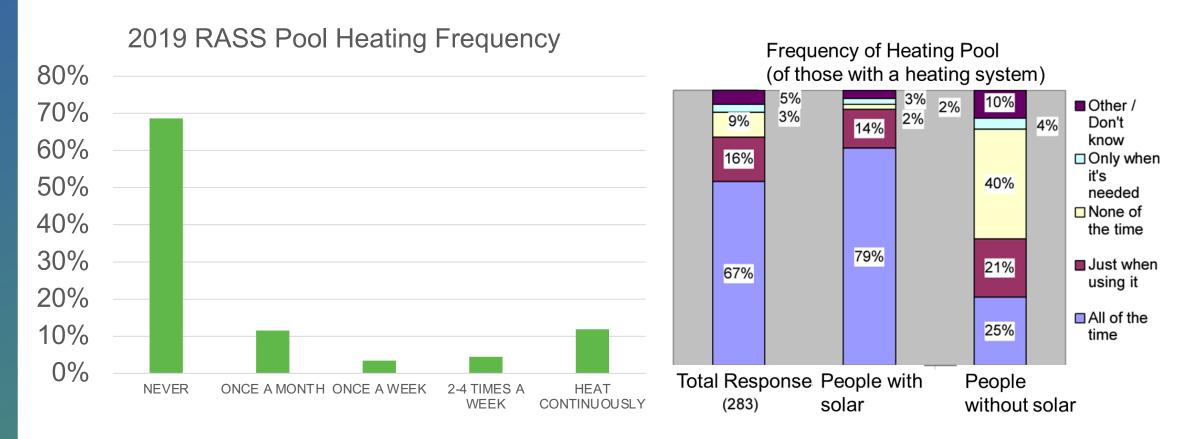
MF and NR Cost Effectiveness

Climate Zone	Nonresidential		
	Benefits Life Cycle Energy Cost Savings + Other PV Savings (2026 Present Value\$)	Costs Total Incremental PV Costs (2026 Present Value\$)	Benefit-to-Cost Ratio
1	38,284	18,786	2.0
2	99,740	18,786	5.3
3	63,681	18,786	3.4
4	125,875	18,786	6.7
5	74,100	18,786	3.9
6	75,320	18,786	4.0
7	78,738	18,786	4.2
8	117,385	18,786	6.2
9	120,703	18,786	6.4
10	123,466	18,786	6.6
11	111,074	18,786	5.9
12	104,567	18,786	5.6
13	118,059	18,786	6.3
14	134,192	18,786	7.1
15	150,548	18,786	8.0
16	102,804	18,786	5.5


High baseline duty cycle due to continuous year-round heating leads to high BCR values.

SF Cost Effectiveness

Climate Zone	Residential					
	Life Cycl Savings + (Benefits le Energy Cost Other PV Savings resent Value\$)		Costs remental PV Costs Present Value\$)	Benefit-to-Cost Ratio	
1	\$	4,692	\$	8,713		0.5
2	\$	22,036	\$	8,713		2.5
3	\$	10,707	\$	8,713		1.2
4	\$	25,525	\$	8,713		2.9
5	\$	10,306	\$	8,713		1.2
6	\$	12,547	\$	8,713		1.4
7	\$	11,665	\$	8,713		1.3
8	\$	22,011	\$	8,713		2.5
9	\$	22,093	\$	8,713		2.5
10	\$	28,555	\$	8,713		3.3
11	\$	29,028	\$	8,713		3.3
12	\$	26,181	\$	8,713		3.0
13	\$	32,254	\$	8,713		3.7
14	\$	29,703	\$	8,713		3.4
15	\$	31,713	\$	8,713		3.6
16	\$	12,179	\$	8,713		1.4


 Low baseline duty cycle due to sporadic seasonal heating leads to lower BCR values.

SF Pool Heating with Gas Heaters

Most single-family pool owners with gas heaters do not to heat pools due to fuel cost

Poll

Open ended answers: Tell us if your experience agrees or disagrees with how people heat their pools? Do people with gas heaters use them a lot, somewhat or not really?

Statewide Impacts

Methodology and Assumptions

Statewide Energy Impacts
 Methodology and Results

Statewide Energy Impacts Methodology

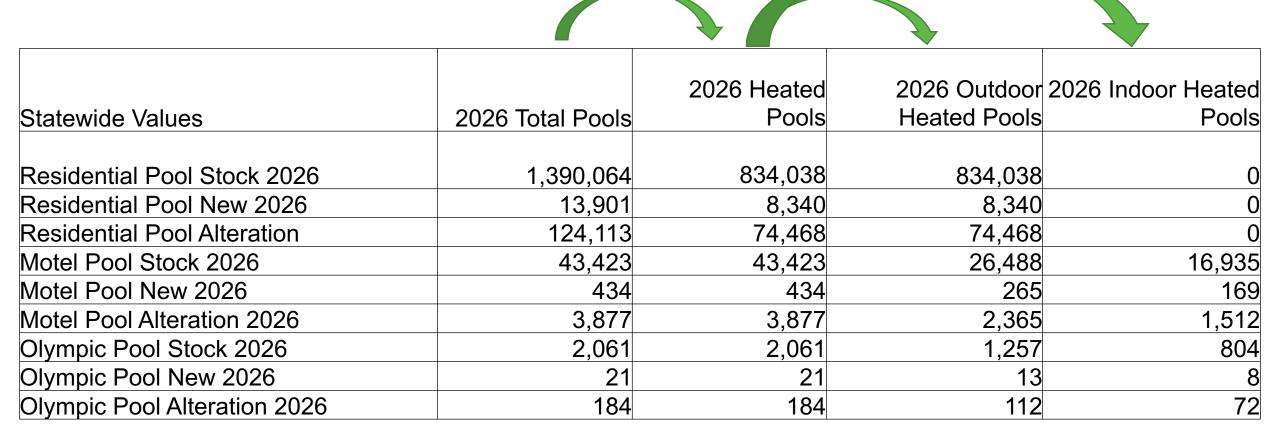
The Statewide CASE Team estimates annual statewide impacts by multiplying **A x B x C**:

- A. per-pool energy impacts (discussed in previous section)
- B. number of pool of new construction/additions/alterations of each applicable pool prototype
- C. number of heated pool in each climate zone

Example:

Per Pool Impacts

Savings type	Savings per pool
Electricity	[X] kWh
Peak demand	[X] Watts
Natural gas	[X] Therms
GHG emissions	[X] Tons CO ₂ e


Affected New Construction

Climate Zone	NR Outdoor	NR Indoor
1	100	20
2	1,000	1,500
16	5,000	3,000

Statewide Energy Impacts


Climate Zone	Gas Savings (Therms)	 GHG savings (MT CO ₂ e)
1	20	1,500
2	50	3,000
16	100	2,000

2026 Pool Forecast

Poll

Open ended answers: What changes to the proposal would you suggest to improve cost-effectiveness for pool owners or help solar thermal system installers?

Discussion and Next Steps

We want to hear from you!

- Provide any last comments or feedback on this presentation now verbally or over the GoTo Webinar Questions Pane
- More information on pre-rulemaking for the 2025
 Energy Code at https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2025-building-energy-efficiency

Comments on this measure are due by June 7, 2023. Please send comments

to <u>info@title24stakeholders.com</u> and copy CASE Authors (see contact info on following slide).

Thank You

Helen Davis

Energy Solutions 510-482-4420 x337 hdavis@energy-solution.com

Sean Steffensen, P.E.

Energy Solutions 510-482-4420 x448 ssteffensen@energy-solution.com

