

2028 CODE CYCLE

Circulator Pump Controls

Codes and Standards Enhancement (CASE) Proposal

Richard Fatu October 23, 2025

Proposal Description

- Code Change Proposal
- Benefits
- Background Information

Proposed Code Change

- New prescriptive requirement for digital controls for circulation pumps in service water heating systems in nonresidential buildings
- Add NR Appendix for guidance on which control method to use in Riser and Non-riser systems
- Required controls:
 - Constant return temperature
 - Demand control (in non-riser systems)
 - Differential or Constant pressure (in riser systems)

See Title24stakeholders.com for proposal description, justification, draft code language, and requested data

Benefits of the Proposed Change

- Utilize digital pump controls to reduce circulator pump energy consumption
- Reduce heat loss in pipes, reducing water heater energy use
- More consistent HW supply and return temperature
- Reduced destratification risk will mitigate HW runouts and may improve heat pump COP
- Digital controls are easier to set up and more persistent than analog controls

Background Information

- Currently no prescriptive requirements for nonresidential central water heating systems in Section 140.5
- NREL & NEEA research suggests adding controls to pumps has significant electricity savings
 - The research only evaluated pump savings not savings from water heater
 - Savings are from pumps running at less than 100% when not needed

Marked-up Code Language

See Title24stakeholders.com for marked-up code language

Title 24, Part 1

No changes

Title 24, Part 6

- SECTION 110.3 –
 MANDATORY
 REQUIREMENTS FOR
 SERVICE WATER-HEATING
 SYSTEMS AND EQUIPMENT
- SECTION 140.5(a)
 Nonresidential Occupancies

Reference Appendices

 NA10 Circulating Pump Controls

Market and Technical Considerations

- Current Conditions and Trends
- Potential Barriers and Solutions
- Technical feasibility

Current Market Conditions

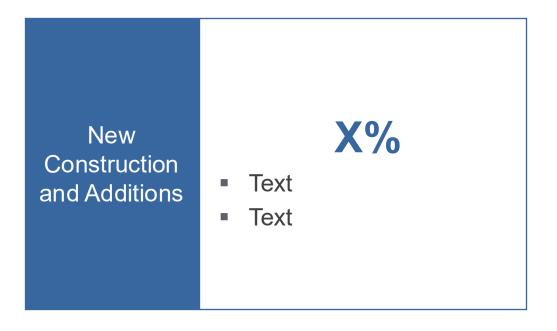
- Current market offerings are focused on controls in circulation pumps for hydronic systems
 - Differential pressure
 - Constant pressure
- There are some suitable for service hot water heating systems:
 - Bell & Gossett, ecocirc XL
 - Taco, 00e
 - Grundfos, MAGNA3
- Validated controls:
 - Constant return temperature
 - Demand control (in non-riser systems)
 - Differential or Constant pressure with balancing valve (in riser systems)
- Non-validated controls:
 - Adaptive or smart controls

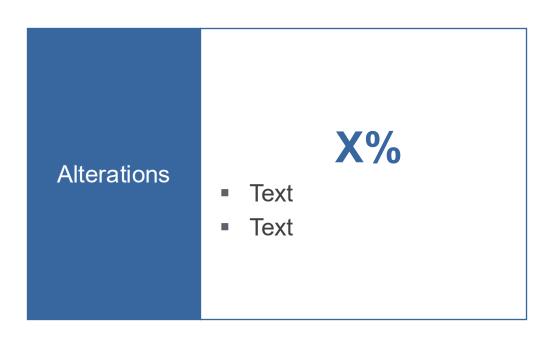
Market Barriers and Solutions

Market Barriers

- 1. Not common industry practice
- 2. Design & installation experience
- 3. Product availability of pump controls in Service Water Heating circulation

Potential Solutions


- 1. Awareness or training
- 2. Training and best practices


Current Market Share

Market share: percentage of buildings that already use the proposed technology or design practice (at or above the proposed stringency level)

Current Market Share

Manufacturers: Are you planning on introduction more pumps for service water heating systems? If yes, please elaborate

Open ended response

Contractors or Designers:

Do you specify or install pump controls? If so which ones?

- a. Aquastat
- b. Timeclock
- c. Both
- d. Constant pressure
- e. Other
- f. I do not specify or install pump controls

Poll

When servicing controls, which ones are still working? Are controls bypassed or manually turned off? If so, which ones?

Open ended response

Technical Considerations

- Digital controls have several benefits compare to analog controls
 - Analog are often defeated:
 - Can be set in the always on position
 - Timers could desync from actual time (daylight savings time)
 - Aquastat can fail for unrelated system issues
 - Controls installed but never turned on or commissioned
- Riser distribution systems have poor compatibility with non-continuous recirculation controls
- Non-riser recirculation systems in large buildings have poor compatibility with purely demand controls, require pump cycling periodically to maintain desired minimum temperature in the distribution system (auto prime)
- Smaller NR, continuous and non-continuous controls are viable

Technical Barriers and Solutions

Slide not shown

Technical Barriers

Potential Solutions

- Training and best practices for designers
- 2. Training and best practices for installers

When does an auto-adapt control method work?

Open ended response

Poll

What else should we know? Are there market or technical barriers or solutions that should be considered?

Open ended response

Per Unit Energy and Cost Impacts

Methodology and Assumptions

- Energy and Energy Cost Savings
- Incremental Costs

Energy and Energy Cost Savings Methodology

- Preliminary energy savings assuming a constant return temperature control strategy
- Nonresidential building type analyzed
- Baseline assumption is circulator pump with ECM and single speed operation
- Future analysis will include other advanced control strategies, will result in increased energy savings
- Data sources:
 - Literature review
 - Field testing (Code Readiness)

Preliminary Savings Estimates

ECM Circulator Pump with Controls	First Year Statewide	First Year Statewide Natural	Confidence Level
	Electricity Savings	Gas Savings	(low, medium,
	(GWh)	(Million Therms)	high)
NR new construction	5.7	0.3	Low

^{*}per square foot for nonresidential buildings.

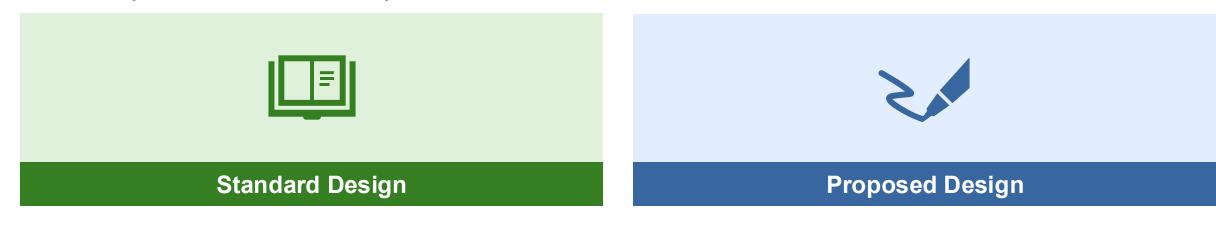
Preliminary field savings

- Non-riser system:
 - TBD
- Riser system:
 - TBD

Energy Modeling Assumptions

- Simulating energy savings in custom spreadsheet calculation
- Simulating using the following prototypical buildings and climate zones
- Included existing and new construction

Prototypical Buildings


- Office (large, medium, small)
- School (large, small)
- Laboratory
- Restaurant
- Grocery

Climate Zones

CA Climate Zones 1 to 16

Key Modeling Assumptions

Prototypes: Large Office, Medium Office, Large School, Small School, Hospital, Assembly, Laboratory, Restaurant, Grocery, Manf, Misc

- 1. Circulation pump with ECM motor & no controls
- 1. Pump with constant return temperature controls

Incremental Cost Framework

Prototype(s): Large Office, Medium Office, Large School, Small School, Hospital, Assembly, Laboratory, Restaurant, Grocery, Manf, Misc

First Cost

- 1. Installation of system and piping
- 2. Commissioning

30-Year Maintenance Costs

- 1. Equipment Replacement
- 2. Regular maintenance of system

First Cost

- 1. Installation of system and piping
 - Including a pump with digital controls
- 2. Commissioning

30-Year Maintenance Costs

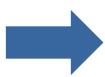
- 1. Equipment Replacement
- 2. Regular maintenance of system

Approach for Gathering Costs

- Develop Basis of Design and obtain cost data for baseline and measure case
- Collect cost data from:
 - Contractors
 - Distributors
 - Installers
 - Consultants
- Review published studies
- Review other codes and standards development efforts (ASHRAE & California Reach Codes)

Compliance Verification

- Key Aspects of Compliance Verification
- Barriers and Solutions
- Revisions to Compliance Software


Key Aspects of Compliance Verification

- Verification would be via self-attestation on the design (NRCC) and installation (NRCI) forms
 - Add single check box to NRCC-PLB Table H
 - Add line item to NRCI-PLB Table F
- Would include reference appendix with guidance based on application and control strategy

Compliance Barriers and Solutions

Compliance Verification Barriers

 Added workload on form owners and plan checkers to understand, review, and verify additions

Potential Solutions

 Explaining possible simple check box approach, and providing compliance manuals

Compliance Software Updates

- The Statewide CASE Team will document modifications needed in the compliance software to account for the new prescriptive requirements
 - User inputs to indicate the intended pump control method
 - Updates to the performance software to calculate the energy impact of the selected control method

Richard Fatu

TRC rfatu@trccompanies.com

Please copy: info@title24stakeholders.com

More information on CEC's 2028 proceeding website.

We want to hear from you!

Cost Effectiveness Results

	Benefits	Costs	
Climate Zone	30-year Energy Cost Savings + Other PV Savings (2029 PV\$)	Total Incremental PV Costs (2029 PV\$)	Benefit-to-Cost Ratio
1	\$#,### — \$#,###	\$#,### — \$#,###	#.# – #.#
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			

Results vary by prototypical building

134.79

Call out – Lorem ipsum dolor sit amet.